

No.	Items:	Specification:	Unit
1	Diagonal Size	2.70	Inch
2	Resolution	256(H) x 64(V)	Lines
3	Active Area	66.53 (W) x 16.61(H)	mm
4	Outline Dimension (Panel)	82.00 (W) x 25.50(H)	mm
5	Pixel Pitch	0.26 (W) x 0.26(H)	mm
6	Pixel Size	0.23 (W) x 0.23 (H)	mm
7	Driver IC	SSD1322UR1	-
8	Grayscale	4	Bit
9	Interface	Parallel / Serial	-
10	IC package type	COF with ZIF tail	-
11	Thickness	1.5±0.1	mm
12	Weight	<6.5	g
13	Duty	1/64	-

PRODUCT CONTENTS

- SERIES PRODUCTS LIST
- PHYSICAL DATA
- ABSOLUTE MAXIMUM RATINGS
- EXTERNAL DIMENSIONS
- ELECTRICAL CHARACTERISTICS
- TIMING OF POWER SUPPLY
- ELECTRO-OPTICAL CHARACTERISTICS
- INTERFACE PIN CONNECTIONS
- COMMAND TABLE
- INITIALIZATION CODE
- SCHEMATIC EXAMPLE
- RELIABILITY TESTS
- OUTGOING QUALITY CONTROL SPECIFICATION
- CAUTIONS IN USING OLED MODULE

REVISION HISTORY

Rev.	Contents	Date
1.0	First Release	2011-03-16
1.1	Update ELECTRO-OPTICAL CHARACTERISTICS Update EXTERNAL DIMENSIONS Update OUTGOING QUALITY CONTROL SPECIFICATION	2011-05-25
1.2	Update Life Time	2012-12-19

■ SERIES PRODUCTS LIST

Module	Display	Cl	E	Luminance	Lifetime (hrs@25°C)
Module	Color	$ \mathbf{x} \mathbf{y} $		typical(cd/m ²)	30% ON*	100% ON*
	Red	0 65 ± 0 04	0.34 ± 0.04	30	150K	45K
	Kea	0.00±0.04	0.54±0.04	50	75K	22K
	Yellow	0 46±0 05	0.51 ± 0.05	60	150K	45K
	rellow	0.40 10.00	0. 51 ± 0. 05	100	70K	21K
	Green	0 21 _0 04	0.62 ± 0.04	80	80K	24K
	Green	0. 31 ±0. 04	0.02 10.04	100	55K	16K
	Blue	0 16±0 05	0.27 ± 0.05	60	80K	24K
	brue	0. 10 ± 0. 05	0. 27 ± 0. 03	80	60K	18K
	White	0 3 + 0 05	0.36 ± 0.05	60	80K	24K
	White	0. 5 ± 0. 05	[0. 30 <u>+</u> 0. 03	80	60K	18K

^{*30%} ON:30% pixels scrolling display on;100% ON:All pixels display on

1. **Life Time** is defined when the Luminance has decayed to less than 50% of the initial Luminance

■ PHYSICAL DATA

No.	Items:	Specification:	Unit
1	Diagonal Size	2.70	Inch
2	Resolution	256(H) x 64(V)	Lines
3	Active Area	66.53 (W) x 16.61(H)	mm
4	Outline Dimension (Panel)	82.00 (W) x 25.50(H)	mm
5	Pixel Pitch	0.26 (W) x 0.26(H)	mm
6	Pixel Size	0.23 (W) x 0.23 (H)	mm
7	Driver IC	SSD1322UR1	-
8	Grayscale	4	Bit
9	Interface	Parallel / Serial	-
10	IC package type	COF with ZIF tail	-
11	Thickness	1.5±0.1	mm
12	Weight	<6.5	g
13	Duty	1/64	-

■ ABSOLUTE MAXIMUM RATINGS

Unless otherwise specified, $V_{SS} = 0V$

 $(Ta = 25^{\circ}C)$

Items		Symbol	Min	Тур.	Max	Unit
	I/O	$V_{ m DDIO}$	-0.5	-	V _{CI}	V
Supply	Logic	V_{CI}	-0.3	-	3.6	V
Voltage	Driving	V_{CC}	-0.5	-	21.0	V
	Core Logic	V_{DD}	-0.5	-	2.75	V
Operating 7	Operating Temperature		-30	-	80	$^{\circ}$ C
Storage Temperature		Tst	-40	-	85	$^{\circ}$
Humidity		-	-	-	90	%RH

NOTE:

Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

■ EXTERNAL DIMENSIONS

■ ELECTRICAL CHARACTERISTICS

◆DC Characteristics

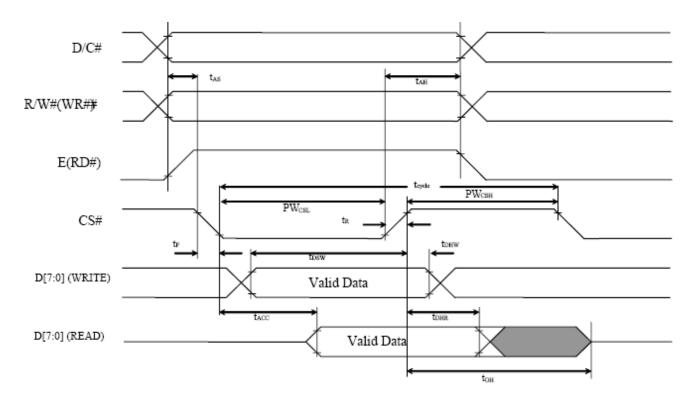
Unless otherwise specified, $V_{SS} = 0V$, $V_{CI} = 2.4V$ to 3.5V. ($Ta = 25^{\circ}C$)

Items		Symbol	Min	Тур.	Max	Unit
	I/O	$V_{ m DDIO}$	1.65	-	V_{CI}	V
Supply	Logic	V_{CI}	2.4	3.0	3.5	V
Voltage	Operating	V_{CC}	10.0	14.0	20.0	V
	Core Logic	V_{DD}	2.4	-	2.6	
Input	High Voltage	V _{IH}	0.8 x V _{DDIO}	-	V_{DDIO}	V
Voltage	Low Voltage	$V_{ m IL}$	0	-	0.2 x V _{DDIO}	V
Output Voltage	High Voltage	V _{OH}	0.9x V _{DDIO}	-	V_{DDIO}	V
	Low Voltage	V_{OL}	0	-	0.1 x V _{DDIO}	V

♦POWER CONSUMPTION

Unless otherwise specified, VSS=0V, VDD=3.0V, Frame Frequency=100Hz

Module	VPP		Luminance (cd/m2)			1 ургса — Солсима	Sleep	
Module	(V)	Command Set(hex)	Min	Typical	Max	All pixels ON	30% pixels ON	Mode
RED	9. 5	0x3F	25	30	-	220	80	<5uA
YELLOW	9. 5	0x3F	50	60	1	220	80	<5uA
GREEN	9. 5	0x3F	70	80	ı	230	90	<5uA
BLUE	12. 0	0x3F	50	60	ı	380	150	<5uA
WHITE	12. 0	0x3F	50	60	-	390	155	<5uA

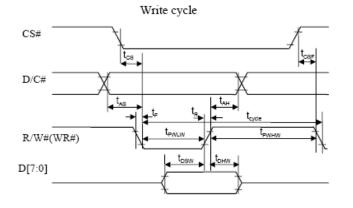

♦AC Characteristics

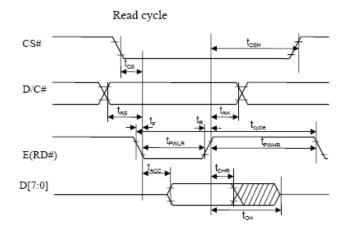
Use 8080/6800-Series MPU Parallel Interface or Serial Interface

1. 6800 Series MPU Parallel Interface

 $(V_{DD} - V_{SS} = 2.4 \text{ to } 2.6 \text{V}, V_{DDIO} = 1.6 \text{V}, V_{CI} = 3.3 \text{V}, T_A = 25 ^{\circ}\text{C})$

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	300	-	-	ns
t_{AS}	Address Setup Time	10	-	-	ns
t_{AH}	Address Hold Time	0	-	-	ns
t_{DSW}	Write Data Setup Time	40	-	-	ns
$t_{ m DHW}$	Write Data Hold Time	7	-	-	ns
t _{DHR}	Read Data Hold Time	20	-	-	ns
t _{OH}	Output Disable Time	-	-	70	ns
t _{ACC}	Access Time	-	-	140	ns
	Chip Select Low Pulse Width (read)	120			*20
PW_{CSL}	Chip Select Low Pulse Width (write)	60	-	-	ns
DW	Chip Select High Pulse Width (read)	60			*20
PW_{CSH}	Chip Select High Pulse Width (write)	60	-	-	ns
t_R	Rise Time	-	-	15	ns
$t_{\rm F}$	Fall Time	-	-	15	ns

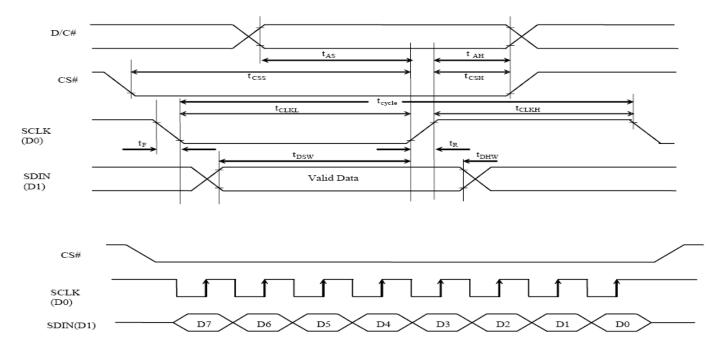




2. 8080 Series MPU Parallel Interface

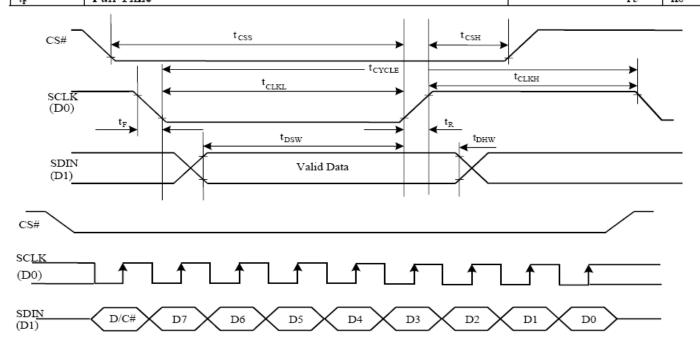
 $(V_{DD} - V_{SS} = 2.4 \text{ to } 2.6 \text{V}, V_{DDIO} = 1.6 \text{V}, V_{CI} = 3.3 \text{V}, T_A = 25 ^{\circ}\text{C})$

Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	300	-	-	ns
t _{AS}	Address Setup Time	10	-	-	ns
t_{AH}	Address Hold Time	0	-	-	ns
t_{DSW}	Write Data Setup Time	40	-	-	ns
t_{DHW}	Write Data Hold Time	7	-	-	ns
t _{DHR}	Read Data Hold Time	20	-	-	ns
t _{OH}	Output Disable Time	-	-	70	ns
t_{ACC}	Access Time	-	-	140	ns
t _{PWLR}	Read Low Time	150	-	-	ns
t_{PWLW}	Write Low Time	60	-	-	ns
t _{PWHR}	Read High Time	60	-	-	ns
t_{PWHW}	Write High Time	60	-	-	ns
t_R	Rise Time	-	-	15	ns
$t_{\rm F}$	Fall Time	-	-	15	ns
t _{CS}	Chip select setup time	0	-	-	ns
t _{CSH}	Chip select hold time to read signal	0	-	-	ns
t _{CSF}	Chip select hold time	20	-	-	ns


3. 4-Wire Serial Interface

 $(V_{\text{DD}}$ - V_{SS} = 2.4 to 2.6V, $V_{\text{DDIO}}{=}1.6V,\,V_{\text{CI}}$ = 3.3V, T_{A} = 25°C)

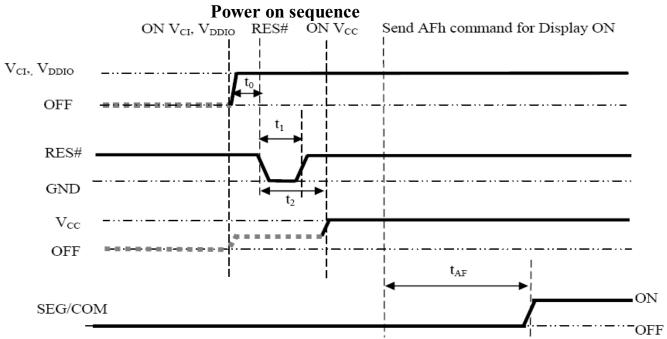
Symbol	Parameter	Min	Тур	Max	Unit
t _{cycle}	Clock Cycle Time	100	-	-	ns
t_{AS}	Address Setup Time	15	-	-	ns
t_{AH}	Address Hold Time	15	-	-	ns
t _{CSS}	Chip Select Setup Time	20	-	-	ns
t_{CSH}	Chip Select Hold Time	10	-	-	ns
t_{DSW}	Write Data Setup Time	15	-	-	ns
$t_{ m DHW}$	Write Data Hold Time	15	-	-	ns
t_{CLKL}	Clock Low Time	20	-	-	ns
t _{CLKH}	Clock High Time	20	-	-	ns
t_R	Rise Time	-	-	15	ns
t _F	Fall Time	-	-	15	ns



4. 3-Wire Serial Interface

 $(V_{\rm DD}$ - $V_{\rm SS}$ = 2.4 to 2.6V, $V_{\rm DDIO}$ =1.6V, $V_{\rm CI}$ = 3.3V, $T_{\rm A}$ = 25°C)

Symbol	Parameter	Min	Тур	Max	Unit
tevele	Clock Cycle Time	100	-	-	ns
t _{css}	Chip Select Setup Time	20	-	-	ns
t_{CSII}	Chip Select Hold Time	10	-	-	ns
l _{DSW}	Write Data Setup Time	1.5	-	-	ns
t _{DHW}	Write Data Hold Time	15	-	-	ns
t _{CLKL}	Clock Low Time	20	-	-	ns
t _{cuxii}	Clock High Time	20	-	-	ns
t _R	Rise Time	-	-	1.5	ns
te	Fall Time	-	-	15	ns


One Edgewater Plaza, Staten Island, NY 10305 * Tel. 718-720-0018 * Fax. 718-720-0225 * Email: sales@allshore.com

5. TIMING OF POWER SUPPLY

◆Power ON sequence:

- 1. Power ON V_{CI}, V_{DDIO}.
- 2. After V_{CI} , V_{DDIO} becomes stable, set wait time at least 1ms (t_0) for internal V_{DD} become stable. Then set RES pin LOW (logic low) for at least 100us (t_1) (4) and then HIGH (logic high).
- 3. After set RES pin LOW (logic low), wait for at least 100us (t_2). Then Power ON V_{CC} .
- 4. After V_{CC} become stable, send command AFh for display ON. SEG/COM will be ON after $200 ms(t_{AF})$.

♦ Power OFF sequence:

- 1. Send command AEh for display OFF.
- 2. Power OFF $V_{CC}^{(1), (2), (3)}$
- 3. Wait for t_{OFF} . Power OFF V_{CI} , V_{DDIO} . (where Minimum t_{OFF} =0ms (5), Typical t_{OFF} =100ms)

Note:

- ⁽¹⁾ Since an ESD protection circuit is connected between V_{CI} , V_{DDIO} and V_{CC} , V_{CC} becomes lower than V_{CI} whenever V_{CI} , V_{DDIO} is ON and V_{CC} is OFF as shown in the dotted line of V_{CC} in Figure above.
- ⁽²⁾V_{CC} should be kept float (disable) when it is OFF.
- (3) Power pins (V_{CI}, V_{CC}) can never be pulled to ground under any circumstance.
- $^{(4)}$ The register values are reset after t_1 .
- ⁽⁵⁾ VCI, V_{DDIO} should not be Power OFF before VCC Power OFF.

■ ELECTRO-OPTICAL CHARACTERISTICS (Ta=25°C)

Items		Symbol	Min.	Тур.	Max.	Unit	Remark
Operating Lumi	nance	L	90	100*	-	cd/m ²	White
Power Consum	ntion	P	_	280	80 290	mW	30% pixels on
1 ower Consum	ption	1	_	280		111 VV	L=100 cd/m ²
Frame Frequency		Fr	-	100	-	Hz	
Color Coordinate	White	CIE x	0.255	0.295	0.335	CIE1931	Darkroom
Color Coordinate	VVIIIC	CIE y	0.295	0.335	0.375	CILI731	Darkitotti
Dognongo Timo	Rise	Tr	-	-	0.02	ms	-
Response Time	Decay	Td	-	-	0.02	ms	-
Contrast Ratio		Cr	10000:1	-	-		Darkroom
Viewing Angle Uniformity		Δθ	160	_	-	Degree	-
Operating Life 7	Гіте	_	20,000	_	-	Hours	L=100cd/m ²

Note:

- 1. 100 cd/m² is based on $V_{CI}=3.0V$, $V_{CC}=14.0V$, contrast command setting 0xCF.
- 2. Contrast ratio is defined as follows:

3. **Life Time** is defined when the Luminance has decayed to less than 50% of the initial Luminance specification. (30% pixels scrolling display on)

(The initial value should be closed to the typical value after adjusting.)

■ INTERFACE PIN CONNECTIONS

No	Symbol	Description						
1	NC	No connection						
2	VSS	Ground. Common Voltage Reference Pin						
3	VCC	Power supply for panel driving voltage. Segment voltage						
4	VCOMH	COM signal deselected voltage level. High Level Voltage Output Of COM Signal						
5	VLSS	Analog system ground pin. Voltage Supply						
6-13	D7-D0	These pins are bi-directional data bus connecting to the MCU data bus. Unused pins are recommended to tie LOW. (Except for D2 pin in SPI mode, D2 is pulled low in SPI mode).						
14	E (RD)	MCU Interface Input pin, in 6800 parallel mode, it is used as enable signal, read/write operation is initiated when this pin is set high with chip selected. In 8080 parallel mode, this pin receives read signal, read operation is initiated when this is pulled low with chip selected. When SPI interface is selected, this pin must be connected to ground.						
15	R/W(WR)	MCU Interface Input pin, in 6800 parallel mode, it is used as read/write selection input, read mode will be carried out when This pin is pulled high while write mode with this pin pulled low. In 8080 parallel mode, this pin will be write input, write operation is initiated when this is pulled low with chip selected. When SPI interface is selected, this pin must be connected to ground.						
16- 17	BS0-1	MCU bus interface selection pins. Select appropriate logic setting as described in the following table. BS[1:0] Bus Interface Selection						
18	D/C	This pin is Data/Command control pin connected to the MCU. When the pin is pulled HIGH, the content at D 7:0 will be interpreted as data. When the pin is pulled LOW, the content at D 7:0 will be interpreted as command.						
19	CS	This pin is the chip select input connected to the MCU. The chip is enabled for MCU communication only when CS is pulled LOW.						
20	RES	This pin is reset signal input. When the pin is pulled LOW, initialization of the chip is executed. Keep this pin pull HIGH during normal operation.						

One Edgewater Plaza, Staten Island, NY 10305 * Tel. 718-720-0018 * Fax. 718-720-0225 * Email: sales@allshore.com

21	FR	This pin is No Connection pins. Nothing should be connected to this pin. This pin should be left open individually.
22	IREF	This pin is the segment output current reference pin. A resistor should be connected between this pin and VSS to maintain the current around 10uA.
23	NC	No connection.
24	VDDIO	Power supply for interface logic level. It should be matched with the MCU interface voltage level.
25	VDD	Power supply pin for core logic operation. A capacitor is required to connect between this pin and VSS.
26	VCI	Low voltage power supply. VCI must always be equal to or higher than VDD and VDDIO.
27	VSL	This is segment voltage reference pin. When external VSL is used, connect with resistor and diode to ground
28	VLSS	Analog system ground pin.
29	VCC	Power supply for panel driving voltage. Segment Voltage
30	NC	No Connection.

■ COMMAND TABLE

D / C #	Hex	D 7	D6	D 5	D4	D3	D2	D2	D 0	Command	Description
											•
0	00	0	0	0	0	0	0	0	0	Enable Gray Scale table	This command is sent to enable the Gray Scale table setting (command B8h)
0	15	0	0	0	1	0	1	0	1		Set Column start and end address
1	A[6:0]	*	A_6	A_5	A_4	A_3	A_2	A_1	A_0	Set Collinn	A[6:0]: Start Address. [reset=0]
1	B[6:0]	*	B_6	B ₅	B_4	B_3	B_2	B_1	B_0		B[6:0]: End Address. [reset=119] Range from 0 to 119
											Range nom 0 to 119
0	5C	0	1	0	1	1	1	0	0	Write RAM Command	Enable MCU to write Data into RAM
0	5D	0	1	0	1	1	1	0	1	Read RAM	
										Command	Enable MCU to read Data from RAM
0	75	0	1	1	1	0	1	0	1		Set Row start and end address A[6:0]: Start Address. [reset=0]
1	A[6:0]	*	A_6	A_5	A_4	A_3	A_2	A_1	A_0	Set Row	B[6:0]: End Address. [reset=0]
1	B[6:0]	*	B ₆	B ₅	B_4	B ₃	B ₂	B_1	B ₀		Range from 0 to 127
0	A0	1	0	1	0	0	0	0	0		A[0]=0b, Horizontal address increment [reset]
1	A[7:0]	0	0	A_5	A_4	0	A_2	A_1	A_0		A[0]=1b, Vertical address increment
1	B[4]	*	*	0	B ₄	0	0	0	1		A[1]=0b, Disable Column Address Re-map [reset] A[1]=1b, Enable Column Address Re-map
											A[2]=0b, Disable Nibble Re-map [reset] A[2]=1b, Enable Nibble Re-map
										Set Re-map and	A[4]=0b, Scan from COM0 to COM[N-1] [reset] A[4]=1b, Scan from COM[N-1] to COM0, where N is the Multiplex ratio
										Dual COM Line mode	
											B[4], Enable / disable Dual COM Line mode 0b, Disable Dual COM mode [reset] 1b, Enable Dual COM mode (MUX ≤ 63)
											Note (1] COM Split Odd Even mode must be disabled (A[5]=0b) when enabling the Dual COM mode (B[4]=1b)
											Details refer to Section 10.1.6
0	A1	1	0	1	0	0	0	0	1		
1	A[6:0]	*	A_6	A ₅	A_4	A_3	A_2	A_1	A_0	Set Display Start Line	Set display RAM display start line register from 0-127 Display start line register is reset to 00h after RESET

D / C #	Hex	D 7	D 6	D 5	D4	D3	D2	D2	D 0	Command	Description	
0	A2	1	0	1	0	0	0	1	0		-	
1	A[6:0]	*	A_6	A_5	A_4	A_3	A_2	A_l	A_0	Set Display Offset	Set vertical scroll by COM from 0-127 The value is reset to 00H after RESET	
0	A4~A7	1	0	1	0	0	X_2	X_1	X_0		A4h = Entire Display OFF, all pixels turns OFF in GS level 0	
											A5h = Entire Display ON, all pixels turns ON in GS level 15	
										Set Display Mode	A6h = Normal Display [reset]	
											A7h = Inverse Display (GS0 → GS15, GS1 → GS14, GS2 → GS13,)	
0	A8	1	0	1	0	1	0	0	0		This command turns ON partial mode. The partial mode	
1	A[6:0]	0	A_6	A_5	A_4	A_3	A_2	A_1	A_0	Enable Partial	display area is defined by the following two parameters,	
1	B[6:0]	0	B_6	B_5	B_4	B_3	B_2	B_1	B_0	Display	A[6:0]: Address of start row in the display area	
											B[6:0]: Address of end row in the display area, where B[6:0] must be ≥ A[6:0]	
0	A9	1	0	1	0	1	0	0	1	Exit Partial	This command is sent to exit the Partial Display mode	
										Display		
0	AB	1	0	1	0	1	0	1	1	Function	A[0]=0b, Select external V _{DD}	
1	A[0]	0	0	0	0	0	0	0	A_0	Selection	A[0]=1b, Enable internal V _{DD} regulator [reset]	
0	AE~AF	1	0	1	0	1	1	1	X_0	Sat Slaan moda	AEh = Sleep mode ON (Display OFF)	
											AFh = Sleep mode OFF (Display ON)	
0	B1	1	0	1	1	0	0	0	1		A[3:0] Phase 1 period (reset phase length) of 5~31 DCLK(s)	
1	A[7:0]	A_7	A_6	A_5	A_4	A_3	A_2	A_1	A_0		clocks as follow:	
											A[3:0] Phase 1 period	
											0000 invalid	
											0001 invalid 0010 5 DCLKs	
											0011 7 DCLKs	
											0100 9 DCLKs [reset]	
											: : 1111 31 DCLKs	
											IIII SI DCLKS	
										Set Phase	457 (179) 0 1 1 (5 (
										Length	A[7:4] Phase 2 period (first pre-charge phase length) of 3~15 DCLK(s) clocks as follow:	
											A[7:4] Phase 2 period	
											0000 invalid	
											0001 invalid 0010 invalid	
											0010 invalid 0011 3 DCLKs	
											: :	
											0111 7 DCLKs [reset]	
											: : 1111 15 DCLKs	
											IIII IS DOLAS	

D / C #	Hex	D 7	D6	D 5	D4	D3	D2	D2	D 0	Command	Description	
0	В3	1	0	1	1	0	0	1	1		A[3:0] [reset=0], divide by DIVSET where	
		-		_		-		_	_		ligs.of preserved, service by B175B1 where	
1	A[7:0]	A_7	A_6	A_5	A_4	A_3	A_2	A_1	A_0		A[3:0] DIVSET	
											0000 divide by 1	
											0001 divide by 2	
											0010 divide by 4	
											0011 divide by 8	
											0100 divide by 16	
											0101 divide by 32	
										Set Front Clock	0110 divide by 64	
										Divider /	0111 divide by 128	
										Oscillator	1000 divide by 256	
										Frequency	1001 divide by 512	
											1010 divide by 1024	
											>=1011 invalid	
											A[7:4] Oscillator frequency, frequency increases as level increases [reset=0101b]	
0	B4	1	0	1	1	0	1	0	0		A[1:0] = 00b: Enable external VSL	
1	A[1:0]	1	0	1	0	0	0	A_1	A_0		A[1:0] = 10b: Internal VSL [reset]	
1	B[7:3]	B ₇	B_6	B ₅	B_4	B_3	1	0	1			
•	2(7.3)	Δ,	26	25	24	23	•		•	Display Enhancement A	B[7:3] = 11111b: Enhanced low GS display quality B[7:3] = 10110b: Normal [reset]	
0	B5	1	0	1	1	0	1	0	1		A[1:0] GPIO0: 00 pin HiZ, Input disabled	
1	A[3:0]	*	*	*	*	A_3	A ₂	A_l	A ₀		01 pin HiZ, Input enabled 10 pin output LOW [reset]	
											11 pin output HIGH	
										Set GPIO	A[3:2] GPIO1: 00 pin HiZ, Input disabled 01 pin HiZ, Input enabled 10 pin output LOW [reset] 11 pin output HIGH	
0	В6	1	0	1	1	0	1	1	0		A[3:0] Second Pre-charge period	
1	A[3:0]	*	*	*	*	A_3	A_2	A_1	A_0		0000b 0 delk	
								•		Set Second Precharge Period	0001b 1 delk 1000b 8 delks [reset] 1111b 15 delks	

D / C #	Hex	D 7	D 6	D 5	D4	D 3	D2	D2	D 0	Command	Description	
0	B8	1	0	1	1	1	0	0	0		The next 15 data bytes define Gray Scale (GS) Table by	
1	A1[7:0]	A17	A16	A15	A14	A13	A12	A1 ₁	A1 ₀		setting the gray scale pulse width in unit of DCLK's	
1	A2[7:0]		A26	A25	A24	A23	A22	A2 ₁	A20		(ranges from 0d ~ 180d)	
1										Set Gray Scale	44[7.0] O O W. C OO4	
1										Table	A1[7:0]: Gamma Setting for GS1, A2[7:0]: Gamma Setting for GS2,	
1										14010	A2[7.0]. Gailina Setting for G52,	
1	A14[7:0]	A14 ₇	A146	l	A144		I		A14 ₀		A14[7:0]: Gamma Setting for GS14,	
1	A15[7:0]			l					A15 ₀		A15[7:0]: Gamma Setting for GS15	
1	A15[7.0]	A137	A136	AIDs	A154	AIJ3	A132	AD ₁	A130			
											Note	
											(1) 0 ≤ Setting of GS1 < Setting of GS2 < Setting of GS3 < Setting of GS14 < Setting of GS15	
											Setting of GS14 Setting of GS15	
											Refer to Section 8.8 for details	
											(2) The setting must be followed by the Enable Gray Scale	
											Table command (00h)	
											(
0	B9	1	0	1	1	1	0	0	1		The default Linear Gray Scale table is set in unit of DCLK's	
											as follow	
											GS0 level pulse width = 0;	
											GS1 level pulse width = 0;	
											GS2 level pulse width = 8;	
										Select Default	GS3 level pulse width = 16;	
										Linear Gray		
										Scale table	: GS14 level pulse width = 104;	
											GS15 level pulse width = 104, GS15 level pulse width = 112	
											Refer to Section 8.8 for details	
0	BB	1	0	1	1	1	0	1	1		Set pre-charge voltage level.[reset = 17h]	
		*	*	1	1	1	_	1	-		Set pre-charge voltage level.[reset = 17h]	
1	A[4:0]	4	7	~	A_4	A_3	A_2	A_1	A ₀		Arte 01 Transaction and the second se	
										Set Pre-charge	A[4:0] Hex code pre-charge voltage	
										voltage	00000 00h 0.20 x V _{CC} : : :	
											11111 1Fh 0.60 x V _{CC}	
0	BE	1	0	1	1	1	1	1	0		Set COM deselect voltage level [reset = 04h]	
1	A[2:0]	*	*	*	*	0	A_2	A_1	A_0			
	[]							1	- 20		A[2:0] Hex code V _{COMH}	
											000 00h 0.72 x V _{CC}	
										Set V _{COMH}	: : : : : : : : : : : : : : : : : : :	
											100 04h 0.80 x V _{CC} [reset]	
											111 07h 0.86 x V _{CC}	
0	C1	1	1		_	0	0		1		A[7:0]: Contract current value, rance:00h, EEh	
0	C1	1	1	0	0	0	0	0	1	Set Contrast	A[7:0]: Contrast current value, range:00h~FFh, i.e. 256 steps for I _{SEG} current [reset = 7Fh]	
1	A[7:0]	A_7	A_6	A_5	A ₄	A_3	A_2	A_1	A_0	Current	1.0. 25 5 steps 251 15EG content [10500 - /1 II]	
L												

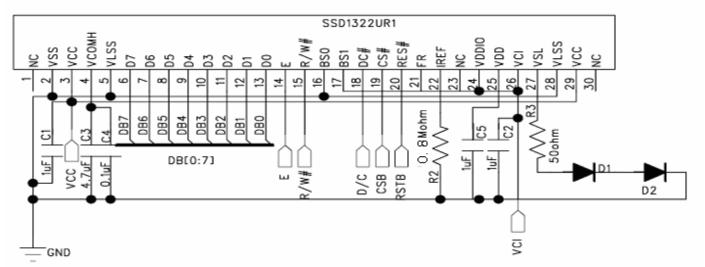
D / C #	Hex	D 7	D 6	D 5	D4	D3	D2	D2	D 0	Command	Description
0	C7	1	1	0	0	0	1	1	1		A[3:0] =
1	A[3:0]	*	*	*	*	A_3	A_2	A_{l}	A_0		0000b, reduce output currents for all colors to 1/16 0001b, reduce output currents for all colors to 2/16
										Master Contrast Current Control	:
										Current Control	1110b, reduce output currents for all colors to 15/16
											1111b, no change [reset]
0	CA	1	1	0	0	1	0	1	0		A[6:0]: Set MUX ratio from 16MUX ~ 128MUX
1	A[6:0]	*	A_6	A_5	A_4	A_3	A_2	A_1	A_0	Set MITX Ratio	A[6:0] = 15d represents 16MUX
											A[6:0] = 127d represents 128MUX [reset]
0	D1	1	1	0	1	0	0	0	1		
1	A[5:4]	1	0	A_5	A_4	0	0	1	0		A[5:4] = 00b: Reserved
1	20	0	0	1	0	0	0	0	0	Enhancement B	A[5:4] = 10b: Normal [reset]
		_			_			_			AFOL MOTI must at the forcet = 10hl
0	FD	1	1	1	1	1	1	0	1		A[2]: MCU protection status [reset = 12h]
1	A[2]	0	0	0	1	0	A_2	1	0		A[2] = 0b, Unlock OLED driver IC MCU interface from
											entering command [reset]
											A[2] = 1b, Lock OLED driver IC MCU interface from
										Lock	entering command
											Note
											(1) The locked OLED driver IC MCU interface prohibits all
											commands and memory access except the FDh command

■ INITIALIZATION CODE

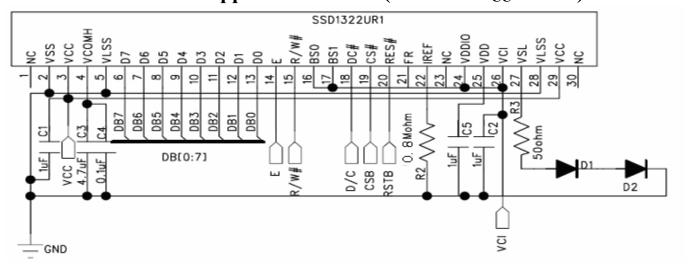
```
void Inital SSD1322()
  WMLCDCOM(0xFD);//Command lock setting
  WMLCDDATA (0x12);
  WMLCDCOM(0xAE);//Display OFF
  WMLCDCOM(0x15);//column address setting
  WMLCDDATA(0x1C);
  WMLCDDATA (0x5B);
  WMLCDCOM(0x75);//row address setting
  WMLCDDATA(0x00);
  WMLCDDATA(0x3F);
  WMLCDCOM(0xA0);//re map&dual com mode
  WMLCDDATA (0x14):
  WMLCDDATA(0x11);//enable dual com mode
  WMLCDCOM(0xA1);//display start line
  WMLCDDATA(0x00);
  WMLCDCOM(0xA2);//display offset
  WMLCDDATA(0x00);
  WMLCDCOM(0xA6);//normal display
  //WMLCDCOM(0xA8);//partial display setting
  //WMLCDDATA(0x00);//start row
  //WMLCDDATA(0x3F);//end row
  //WMLCDCOM(0xA9);//exit partial display mode
  WMLCDCOM(0xAB);//function selection
  WMLCDDATA(0x01);//enable internal vdd
  WMLCDCOM(0xB1);//phase length setting
  WMLCDDATA (0x74); //phase1=9dc1k. phase2=7dc1k
```



```
WMLCDCOM(0xB3);//front clock divider&oscillator freq
WMLCDDATA(0x51):
WMLCDCOM(0xB4);//display enhancement A
WMLCDDATA (0xA2)://INTERNAL VSL
WMLCDDATA(0xB5);//normal or 111111101 to enhance low GS
//WMLCDCOM(0xB5)://GPIO SETTING
//WMLCDDATA(0x0a);
WMLCDCOM(0xB6);//second precharge period setting
WMLCDDATA (0x08):
WMLCDCOM(0xBB);//set precharge voltage
WMLCDDATA (0x17);
WMLCDCOM(0xBE);//set VCOMH voltage
WMLCDDATA (0x04); //0.80*VCC
WMLCDCOM(0xC1);//contrast set
WMLCDDATA (CONTRAST);
WMLCDCOM(0xC7);//master current set
WMLCDDATA(0x0F);
WMLCDCOM(OxCA);//mux set
WMLCDDATA(0x3F);
WMLCDCOM(0xD1);//display enhancement B
WMLCDDATA(0xA2);
WMLCDDATA (0x20);
WMLCDCOM(0x00);//enable gray scale setting
WMLCDCOM(0xB8);//gray scale setting
WMLCDDATA (0x00); //GS1=0
WMLCDDATA (0x0C); //GS2=8
WMLCDDATA (0x18); //GS3=8
WMLCDDATA (0x24)://GS4=8
WMLCDDATA (0x30); //GS5=9
WMLCDDATA (0x3C); //GS6=9
```

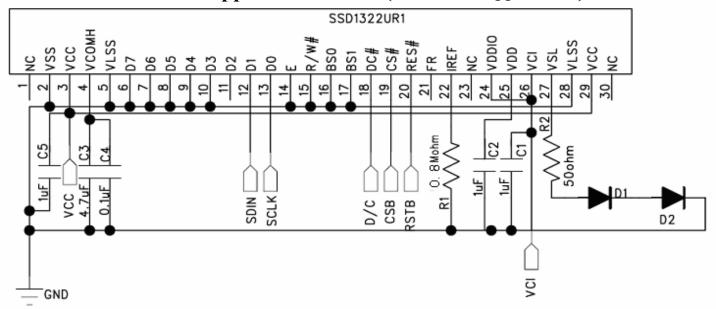


```
WMLCDDATA (0x48); //GS7=9
WMLCDDATA (0x54); //GS8=10
WMLCDDATA (0x60); //GS9=10
WMLCDDATA (0x6C); //GS10=10
WMLCDDATA (0x78); //GS11=10
WMLCDDATA (0x84); //GS12=10
WMLCDDATA (0x90); //GS13=11
WMLCDDATA (0x9C); //GS14=11
WMLCDDATA (0xA8); //GS15=12
WMLCDCOM (0xAF); //Display ON
```

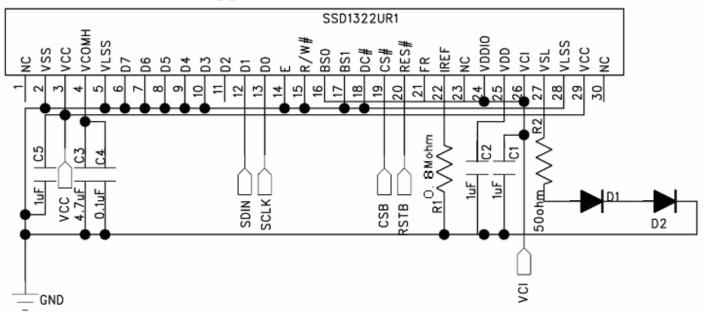
Note:


Set appropriate parameters of initialization base on actual application.

■ SCHEMATIC EXAMPLE

\spadesuit8080 Series Interface Application Circuit(External V_{CC} =14.0V):


\spadesuit 6800 Series Interface Application Circuit(External V_{CC} =14.0V):


One Edgewater Plaza, Staten Island, NY 10305 * Tel. 718-720-0018 * Fax. 718-720-0225 * Email: sales@allshore.com

lacktriangle4-wire SPI Interface Application Circuit(External V_{CC} =14.0V):

lacktriangle3-wire SPI Interface Application Circuit(External V_{CC} =14.0V):

NOTE:

Voltage at IREF = VCC - 6V. For VCC = 14V, IREF = 10uA:

R1 = (Voltage at IREF - VSS) / IREF= (14 - 6) / 10u= 0.8M Ω

 $R2 = 50 \Omega$, $1/8W^{(1)}$

D1 - D2 = Vth = 0.7V, $1N4148^{(1)}$

C1 ~ C2, C3, C5: 4.7uF, C4: 0.1uF

Note

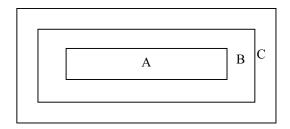
(1) The value is recommended value. Select appropriate value against module application.

■ RELIABILITY TESTS

	Item	Condition	Criterion			
High Te	emperature Storage (HTS)	80±2°C, 200 hours	 After testing, the function test is ok. After testing, no addition to the defect. 			
High Tei	mperature Operating (HTO)	70±2°€, 96 hours	3. After testing, the change of luminance should be within +/- 50% of initial value.			
Low Te	emperature Storage (LTS)	-30±2°C, 200 hours	4. After testing, the change for the mono and area color must be			
Low Ter	mperature Operating (LTO)	-20±2°€, 96 hours	within (+/-0.02, +/- 0.02) and for the full color it must be within (+/-0.04, +/-0.04) of			
High Tempe	erature / High Humidity Storage (HTHHS)	50±3°C, 90%±3%RH, 120 hours	initial value based on 1931 CIE coordinates. 5. After testing, the change of total current			
Thermal S	hock (Non-operation) (TS)	-20±2°C ~ 25°C ~ 70±2°C (30min) (5min) (30min) 10cycles	consumption should be within +/- 50% of initial value.			
Vibration (Packing)	10~55~10Hz,amplitu de 1.5mm, 1 hour for each direction x, y, z	1. One box for each test.	e and the electrical defects.			
Drop (Packing)	Height: 1 m, each time for 6 sides, 3 edges, 1 angle	2. No addition to the cosmetic				
ESD (finished product housing)	±4kV (R: 330Ω C: 150pF , 10times, air discharge)	 After testing, cosmetic and electrical defects should not happen. In case of malfunction or defect caused by ESD damage, it would be judged as a good part if it would be recovered to normal state after resetting. 				

Note: 1) For each reliability test, the sample quantity is 3, and only for one test item.

- 2) The HTHHS test is requested the Pure Water(Resistance>10M Ω).
- 3) The test should be done after 2 hours of recovery time in normal environment.


■ OUTGOING QUALITY CONTROL SPECIFICATION

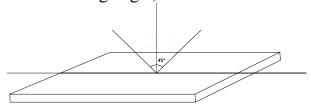
♦Standard

According to GB/T2828.1-2003/ISO 2859-1: 1999 and ANSI/ASQC Z1.4-1993, General Inspection Level II.

◆ Definition

- 1 Major defect: The defect that greatly affect the usability of product.
- 2 Minor defect: The other defects, such as cosmetic defects, etc.
- 3 Definition of inspection zone:

Zone A: Active Area


Zone B: Viewing Area except Zone A

Zone C: Outside Viewing Area

Note: As a general rule, visual defects in Zone C are permissible, when it is no trouble of quality and assembly to customer s product.

◆Inspection Methods

1 The general inspection: under 20W x 2 or 40W fluorescent light, about 30cm viewing distance, within 45° viewing angle, under 25±5°C.

2 The luminance and color coordinate inspection : By PR705 or BM-7 or the equal equipments, in the dark room, under 25 ± 5 °C.

◆Inspection Criteria

1 Major defect : AQL= 0.65

gor delect . MQE 0.05								
Item	Criterion							
	1. No display or abnormal display is not accepted							
Function Defect	2. Open or short is not accepted.							
	3. Power consumption exceeding the spec is not accepted.							
Outline Dimension	Outline dimension exceeding the spec is not accepted.							
Glass Crack	Glass crack tends to enlarge is not accepted.							

2 Minor Defect : AQL= 1.5

Item	: AQL= 1.3	Criterion							
100111	Size	(mm)	Accepted Q	ty					
Spot			Area A + Area B	Area C					
Defect		Φ≦0.07	Ignored	<u> </u>					
(dimming and	() Y	$0.07 < \Phi \le 0.10$	3						
lighting	X	0.10<Φ≦0.15	1	Ignored					
spot)	 	0.15<Ф	0						
	Note: $\Phi = (x + y) /$	2	I	<u></u>					
Line	L (Length): mm	W (Width): mm	Area A + Area B	Area C					
Defect	/	$W \leq 0.02$	Ignored	1					
(dimming and	L≦3.0	$0.02 < W \le 0.03$	2						
lighting	L≦2.0	$0.03 < W \le 0.05$	1	Ignored					
line)	/	0.05 <w< td=""><td>As spot defect</td><td colspan="3"></td></w<>	As spot defect						
Polarizer Stain	Stain which can be wiped off lightly with a soft cloth or similar cleaning is accepted, otherwise, according to the Spot Defect and the								
	Line Defect. 1. If scratch can be seen during operation, according to the criterions								
	of the Spot Defect and the Line Defect. 2. If scratch can be seen only under non-operation or some special angle, the criterion is as below:								
Polarizer	L (Length): mm	W (Width): mm	Area A + Area B	Area C					
Scratch	/	$W \leq 0.02$	Ignore	ı					
	3.0 <l≦5.0< td=""><td>$0.02 < W \le 0.04$</td><td>2</td><td></td></l≦5.0<>	$0.02 < W \le 0.04$	2						
	L≦3.0	$0.04 < W \le 0.06$	1	Ignore					
	/	0.06 <w< td=""><td>0</td><td></td></w<>	0						
	Si	ze	Area A + Area B	Area C					
D.1.		$\Phi \leq 0.20$	Ignored						
Polarizer Air Bubble	Y	$0.20 < \Phi \leq 0.30$	2						
7 Mi Duooic	X	$0.30 < \Phi \leq 0.50$	1	Ignored					
		0.50<⊕	0						

	1. On the corner	(mm)							
		X	≤ 1.5						
		у	≤ 1.5						
	***************************************	Z	≤ t						
	z J								
Glass Defect	2. On the bonding edge								
(Glass		(mm)							
Chiped)	7 12	X	≤ a / 4						
		у	\leq s / 3 & \leq 0.7						
	4	Z	≤ t						
	The state of the s								
	3. On the other edges								
	at the state of th	(mm)							
		X	≤ a / 8						
		У	≤ 0.7						
		Z	≤ t						
	Note: t: glass thickness s: pad width a: the length of the edge								
TCP Defect	Crack, deep fold and deep pressure mark on the	he TCP a	re not accepted						
Pixel Size	The tolerance of display pixel dimension show spec	ıld be wit	hin ±20% of the						
Luminance	Refer to the spec or the reference sample								
Color	Refer to the spec or the reference sample								

■ CAUTIONS IN USING OLED MODULE

◆Precautions For Handling OLED Module:

- 1. OLED module consists of glass and polarizer. Pay attention to the following items when handling:
 - i. Avoid drop from high, avoid excessive impact and pressure.
 - ii. Do not touch, push or rub the exposed polarizers with anything harder than an HB pencil lead.
 - iii. If the surface becomes dirty, breathe on the surface and gently wipe it off with a soft dry cloth. If it is terrible dirty, moisten the soft cloth with Isopropyl alcohol or Ethyl alcohol. Other solvents may damage the polarizer. Especially water, Ketone and Aromatic solvents.
 - iv. Wipe off saliva or water drops immediately, contact the polarizer with water over a long period of time may cause deformation.
 - v. Please keep the temperature within specified range for use and storage. Polarization degradation, bubble generation or polarizer peeling-off may occur with high temperature and high humidity.
 - vi. Condensation on the surface and the terminals due to cold or anything will damage, stain or dirty the polarizer, so make it clean as the way of iii.
- 2. Do not attempt to disassemble or process the OLED Module.
- 3. Make sure the TCP or the FPC of the Module is free of twisting, warping and distortion, do not pull or bend them forcefully, especially the soldering pins. On the other side, the SLIT part of the TCP is made to bend in the necessary case.
- 4. When assembling the module into other equipment, give the glass enough space to avoid excessive pressure on the glass, especially the glass cover which is much more fragile.
- 5. Be sure to keep the air pressure under 120 kPa, otherwise the glass cover is to be cracked.
- 6. Be careful to prevent damage by static electricity:
 - i. Be sure to ground the body when handling the OLED Modules.
 - ii. All machines and tools required for assembling, such as soldering irons, must be properly grounded.
 - iii. Do not assemble and do no other work under dry conditions to reduce the amount of static electricity generated. A relative humidity of 50%-60% is recommended.
 - iv. Peel off the protective film slowly to avoid the amount of static electricity generated.
 - v. Avoid to touch the circuit, the soldering pins and the IC on the Module by the body.
 - vi. Be sure to use anti-static package.
- 7. Contamination on terminals can cause an electrochemical reaction and corrade the terminal circuit, so make it clean anytime.
- 8. All terminals should be open, do not attach any conductor or semiconductor on the terminals.
- 9. When the logic circuit power is off, do not apply the input signals.
- 10. Power on sequence: $V_{DD} \rightarrow V_{CC}$, and power off sequence: $V_{CC} \rightarrow V_{DD}$.
- 11. Be sure to keep temperature, humidity and voltage within the ranges of the spec, otherwise shorten Module's life time, even make it damaged.
- 12. Be sure to drive the OLED Module following the Specification and datasheet of IC controller, otherwise something wrong may be seen.

ALL SHORE INDUSTRIES

ASI-O-270JAWWH70/M

13. When displaying images, keep them rolling, and avoid one fixed image displaying more than 30 seconds, otherwise the residue image is to be seen. This is the speciality of OLED.

◆Precautions For Soldering OLED Module:

- 1. Soldering temperature : $260^{\circ}\text{C} \pm 10^{\circ}\text{C}$.
- 2. Soldering time: 3-4 sec.
- 3. Repeating time: no more than 3 times.
- 4. If soldering flux is used, be sure to remove any remaining flux after finishing soldering operation. (This does not apply in the case of a non-halogen type of flux.) It is recommended to protect the surface with a cover during soldering to prevent any damage due to flux spatters.

◆ Precautions For Storing OLED Module:

- 1. Be sure to store the OLED Module in the vacuum bag with dessicant.
- 2. If the Module can not be used up in 1 month after the bag being opened, make sure to seal the Module in the vacuum bag with dessicant again.
- 3. Store the Module in a dark place, do not expose to sunlight or fluorescent light.
- 4. The polarizer surface should not touch any other objects. It is recommended to store the Module in the shipping container.
- 5. It is recommended to keep the temperature between 0°C and 30°C, the relative humidity not over 60%.

♦ Limited Warranty

Unless relevant quality agreements signed with customer and law enforcement, for a period of 12 months from date of production, all products (except automotive products) All Shore will replace or repair any of its OLED modules which are found to be functional defect when inspected in accordance with All Shore OLED acceptance standards (copies available upon request). Cosmetic/visual defects must be returned to All Shore within 90 days of shipment. Confirmation of such date should be based on freight documents. The warranty liability of All Shore is limited to repair and/or replacement on the terms above. All Shore will not be responsible for any subsequent or consequential events.

◆Return OLED Module Under Warranty:

- 1. No warranty in the case that the precautions are disregarded.
- 2. Module repairs will be invoiced to the customer upon mutual agreement. Modules must be returned with sufficient description of the failures or defects.

♦PRIOR CONSULT MATTER

- 1. For All Shore standard products, we keep the right to change material, process ... for improving the product property without any notice on our customer.
- 2. If you have special requirement about reliability condition, please let us know before you start the test on our samples.

One Edgewater Plaza, Staten Island, NY 10305 * Tel. 718-720-0018 * Fax. 718-720-0225 * Email: sales@allshore.com