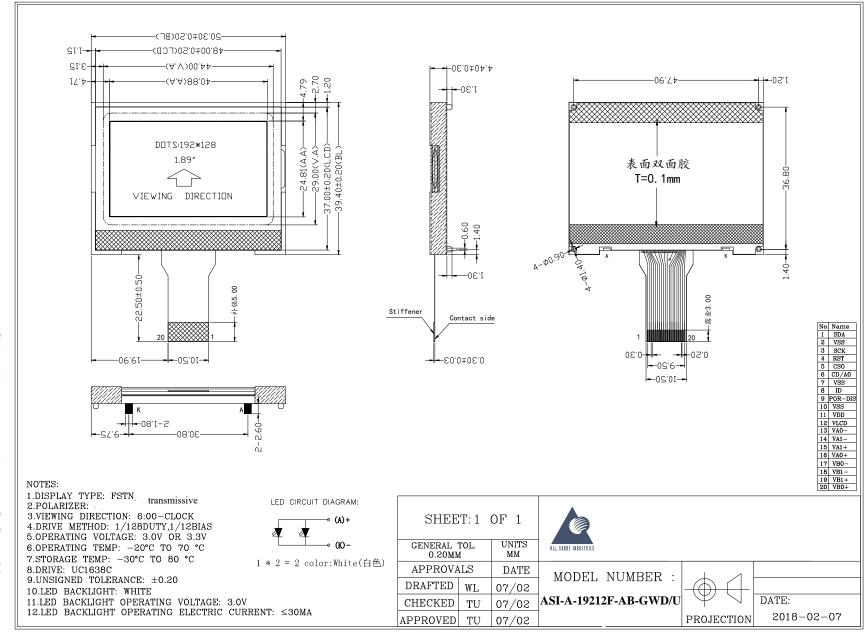


ASI-A-19212F-AB-GWD/U

Item	Contents	Unit
LCD type	FSTN NEGATIVE	-
Viewing direction	6:00	O'Clock
Module size (W×H×T)	50.30×39.40×4.40 (excluded FPC length)	mm
Viewing area (W×H)	44.00×29.00	mm
Driver IC	UC1638	-
Number of dots	192X128	-
Backlight type	2 LEDS White 3.0V 30mA	-
Interface type	Serial interface	-
Operating temperature	-20 ~ 70	°C
Storage temperature	-30 ~ 80	°C

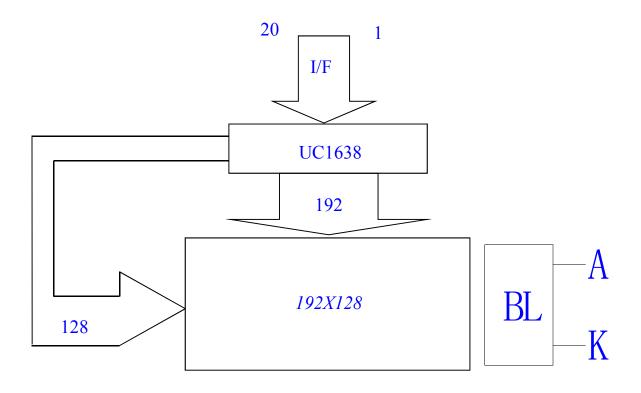
Revision	Date	Description	Written By	Approved By
.0	2017-05-19			

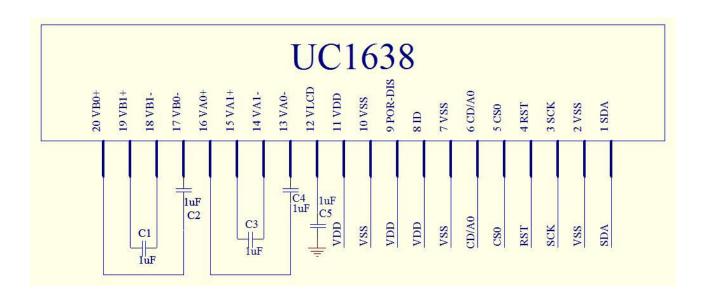

CONTENTS

1.0	GENERAL SPECIFICATION
2.0	OUTLINE DRAWING
3.0	INTERFACE PIN DESCRIPTION
4.0	BLOCK DIAGRAM
5.0	OPERATING PRINCIPLE & DRIVING METHOD
6.0	ABSOLUTE MAXIMUM RATINGS
7.0	ELECTRICAL CHARACTERISTICS
8.0	ELECTRO-OPTICAL CHARACTERISTICS
9.0	STANDARD SPECIFICATION FOR RELIABILITY
10.0	QUALITY ASSURANCE
11.0	PRECAUTIONS FOR USING LCD MODULE

1.0 GENERAL SPECIFICATION

Item	Contents	Unit
LCD type	FSTN NEGATIVE	-
Viewing direction	6:00	O'Clock
Module size (W×H×T)	50.30×39.40×4.40 (excluded FPC length)	mm
Viewing area (W×H)	44.00×29.00	mm
Driver IC	UC1638	-
Number of dots	192X128	-
Backlight type	2 LEDS White 3.0V 30mA	-
Interface type	Serial interface	-
Operating temperature	-20 ~ 70	°C
Storage temperature	- 30 ∼ 80	°C




3.0 INTERFACE PIN DESCRIPTION

Pin No.	Symbol	Pin Description
1	SDA	Serial data input
2	VSS	Ground
3	SCK	Serial clock input
4	RST	A reset pin.
5	CS0	Chip select signal input(low active)
6	CD/A0	Data or command select signal input
7	VSS	Ground
8	ID	ID pin is for production control
9	POR-DIS	Power-ON reset control
10	VSS	Ground
11	VDD	Power supply (+3.0)
12	VLCD	High voltage LCD Power Supply
13	VA0-	LCD Bias Voltages
14	VA1-	LCD Bias Voltages
15	VA1+	LCD Bias Voltages
16	VA0+	LCD Bias Voltages
17	VB0-	LCD Bias Voltages
18	VB1-	LCD Bias Voltages
19	VB1+	LCD Bias Voltages
20	VB0+	LCD Bias Voltages

4.0 BLOCK DIAGRAM

5.0 OPERATING PRINCIPLE & DRIVING METHOD

The following is a list of host commands supported by UC1638c:

C/D: 0: Control, 1: Data W/R: 0: Write Cycle, 1: Read Cycle D7-D0: #: Useful Data bits -: Don't Care

No	Command	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Action	Default
	Write Data Byte	0	0	0	0	0	0	0	0	0	1		
1.	(multiple-byte command)	1	0	#	#	#	#	#	#	#	#	Write byte by byte	N/A
	(manapie byte command)	:	:	:	:	:	1	:	:	:	:		16
	Read Data Byte	0	0	0	0	0	0	0	0	1	0		
2.	(multiple-byte command)	1	1	#	#	#	#	#	#	#	#	Read byte by byte	N/A
	(multiple-byte command)	:	:	:	:	:	:	:	:	:	:		
8	Get Status	0	0	0	0	0	0	0	0	1	1		
3.	(triple-byte command)	1	1	POR	MX	MY	PID	DE	WS	MD	MS	Get Status	N/A
	(triple byte command)	1	1	Ver	[1:0]	8		PMC	0[5:0]			. 0	
4.	Set Column Address	0	0	0	0	0	0	0	1	0	0	Set CA[7:0]	00H
4.	(double-byte command)	1	0	#	#	#	#	#	#	#	#	Set OALT.U	UUH
5.	Set Temp. Compensation	0	0	0	0	1	0	0	#	#	#	Set TC[2:0]	100b
6.	Set Pump Control	0	0	0	0	1	0	1	1	0	#	Set PC	1b
	Set Adv. Program Control	0	0	0	0	1	1	0	R	R	R	R = 0~5.	
7.	(double-byte command)	1	0	#	#	#	#	#	#	#	#	Set APC[R][7:0]	N/A
	Set Scroll Line LSB	0	0	0	1	0	0	#	#	##	#	Set SL[3:0]	0H
8.	Set Scroll Line MSB	0	0	0	1	0	1	#	#	# 3	#	Set SL[7:4]	OH
Sagar E	Set Page Address LSB	0	0	0	1	1	0	#	#	#	#	Set PA[3:0]	0H
9.	Set Page Address MSB	0	0	0	1	1	1	0	0_	#	#	Set PA[5:4]	OH
40	Set V _{BIAS} Potentiometer	0	0	1	0	0	0	0	0	0	1		
10.	(double-byte command)	1	0	#	#	#	#	#.	#	#	#	Set PM[7:0]	54H
11.	Set Partial Display Control	0	0	1	0	0	0	0	1	0	#	Set LC[8]	0: Disable
12.	Set COM Scan Function	0	0	1	0	0	0	0	1	1	#	Set CSF	0b
13.	Set RAM Address Control	0	0	1	0	0	0	1	#	#	#	Set AC[2:0]	001b
14.	Set Display mode	0	0	1	0	0	1	0	1	#	#	Set DC[5:4]	00b
15.	Set Line Rate	0	0	1	0	1	0	0	0	#	#	Set LC[3:2]	10b
16.	Set All-Pixel-ON	0	0	1	0	1	0	0	1	0	#	Set DC[1]	0b
17.	Set Inverse Display	0	0	1	0	1	0	0	1	1	#	Set DC[0]	0b
18.	Set LCD Mapping Control	0	0	1	-1	0	0	0	#	#	0	Set LC[1:0]	00b
10000	Set N-Line Inversion	0	0	1	71	0	0	1	0	0	0	The company of the cold	XXXXXXXX
19.	(double-byte command)	1	0	• D	#	#	#	#	#	#	#	Set NIV[6:0]	00H
20	Set Display Enable	0	0	1	1	0	0	1	0	0	1	0.4 0.070.01	401
20.	(double-byte command)	1	0	W	0	1	0	1	1	#	#	Set DC[3:2]	10b
21.	Set LCD Gray Shade 1	0	0	1	1	0	1	0	0	#	#	Set LC[5:4]	01b
22.	Set LCD Gray Shade 2	0	0	1	1	0	1	0	1	#	#	Set LC[7:6]	10b
in the same	System Reset	0	0	1	1	1	0	0	0	0	1		70.00
23.	(double-byte command)	1	0	1	1	1	0	0	0	1	0	System Reset	N/A
24.	NOP	0	0	1	1	1	0	0	0	1	1	No operation	N/A
	Set Test Control	0	0	1	1	1	0	0	1	-	T	For testing only.	
25.	(double-byte command)	1	0	#	#	#	#	#	#	#	#	Do not use.	N/A
26	Set LCD Bias Ratio	0	0	1	1	1	0	1	0	#	#	Set BR[1:0]	11b: 12
	Reset Cursor Update Mode	0	0	1	1	1	0	1	1	1	0	AC[4]=0, CA=CR	N/A
and the same of	Set Cursor Update Mode	0	0	1	1	1	0	1	1	1	1	AC[4]=1, CR=CA	N/A
	Set COM End	0	0	1	1	1	1	0	0	0	1		
29.	(double-byte command)	1	0	#	#	#	#	#	#	#	#	Set CEN[7:0]	159
20	Set Partial Display Start	0	0	1	1	1	1	0	0	1	0	0-1-00777-63	
30.	(double-byte command)	1	0	#	#	#	#	#	#	#	#	Set DST[7:0]	0
24	Set Partial Display End	0	0	1	1	1	1	0	0	1	1	Oot DENEZ-01	450
31.	(double-byte command)	1	0	#	#	#	#	#	#	#	#	Set DEN[7:0]	159

No	Command	C/D	W/R	D7	D6	D5	D4	D3	D2	D1	D0	Action	Default
32.	Set Window Programming		0	1	1	-1	1	0	1	0	0	Set WPC0[7:0]	0
32.	Starting Column Address	1	0	#	#	#	#	#	#	#	#	Set WPCu[7.0]	U
33.	Set Window Programming	0	0	1	1	1	1	0	1	0	1	Set WPP0[5:0]	0
33.	Starting Page Address	1	0	0	0	#	#	#	#	#	#	Set Wir O[3.0]	U
34.	Set Window Programming	0	0	1	1	1	1	0	1	1	0	Set WPC1[7:0]	239
54.	Ending Column Address	1	0	#	#	#	#	#	#	#	#	Set WFC1[r.0]	239
35.	Set Window Programming	0	0	1	1	1	1	0	1	1	1	Set WPP1[5:0]	39
33.	Ending Page Address	1	0	0	0	#	#	#	#	#	#	Set WFF I[5.0]	39
36.	Enable Window Program	0	0	1	1	1	1	1	0	0	#	Set AC[3]	0: Disable
37	Set MTP Operation control	0	0	1	0	1	1	1	0	0	0	Set MTPC[4:0]	10H
31.	(double-byte command)	1	0	0	0	0	#	#	#	#	#	Get Will G[4.0]	
38.	Set MTP Write Mask	0	0	1	0	1	1	1	0	0	1	Set MTPM[5:0]	00H
50.	(double-byte command)	1	0	0	0	#	#	#	#	#	#	Set WITFW[5.0]	JUH
39.	Set MTP Read	0	0	1	1	1	1	1	0	1	0	Set RV[7:0] (BR=00b)	00H
35.	Potentiometer	1	0	#	#	#	#	#	#	#	#	Set KV[7:0] (BK=000)	UUH
40.	Set MTP Program/Erase	0	0	1	1	1	1	1	0	1	1	Set WV[7:0] (BR=10b)	46H
40.	Potentiometer	1	0	#	#	#	#	#	#	#	#	Set WV[7.0](BIX-100)	400
41.	Set MTP Write Timer	0	0	1	1	1	1	1	1	0	0	Set WT[7:0]	40H
41.	(double-byte command)	1	0	#	#	#	#	#	#	#	#	Jet William	4011
42.	Set MTP Read Timer	0	0	1	1	1	1	1	1	0	1 1	Set RT[7:0]	03H
72.	(double-byte command)	1	0	#	#	#	#	#	#	#	#_	Occivitiv.oj	UJII

Warning: Any bit patterns other than the commands listed above may result in undefined behavior.

Notes:

- (1) Any bit patterns other than the commands listed above may result in undefined behavior.
- (2) The interpretation of commands (37)~(42) depends on register MTPC[3].
- (3) After MTP-ERASE or MTP-PROGRAM operation, before resuming normal operation, please always a) Remove TST4 power source,
 - b) Do a full VDD ON-OFF-ON cycle.

6.0 ABSOLUTE MAXIMUM RATINGS (Ta = 25°C, $V_{SS} = 0 \text{ V}$)

Symbol	Parameter	Min.	Max.	Unit
V _{DD}	Logic Supply voltage	-0.3	+4.0	V
V _{DD2}	LCD Generator Supply voltage	-0.3	+4.0	V
V _{DD3}	Analog Circuit Supply voltage	-0.3	+4.0	V
V _{DD2/3} -V _{DD}	Voltage difference between V _{DD} and V _{DD2/3}		1.6	V
V _{LCD}	LCD Generated voltage (-40°C ~ +85°C)	-0.3	+19.8	V
V _{IN}	Digital input signal	-0.4	V _{DD} + 0.5	V
T _{OPR}	Operating temperature range	-40	+85	°C
T _{STR}	Storage temperature	-55	+125	°C

Note:

- V_{DD} is based on V_{SS} = 0V
- 2. Stress beyond ranges listed above may cause permanent damages to the device.

7.0 ELECTRICAL CHARACTERISTICS

DC CHARACTERISTICS

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{DD}	Supply for digital circuit		1.7	1.8~3.3	3.6	V
V _{DD2/3}	Supply for bias & pump		2.7	2.8~3.3	3.6	٧
V _{LCD}	Charge pump output	V _{DD2/3} ≥ 2.7V, 25 ^o C		14.5	17.49	٧
VD	LCD data voltage	V _{DD2/3} ≥ 2.7V, 25°C	0.99		1.59	V
VIL	Input logic LOW	200			0.2V _{DD}	V
VIH	Input logic HIGH		0.8V _{DD}			V
Vol	Output logic LOW				0.2V _{DD}	٧
VoH	Output logic HIGH		0.8V _{DD}			V
I _{IL}	Input leakage current	VIN = V _{DD} or Vss			1.5	μА
I _{SB}	Standby current	$V_{DD} = V_{DD2/3} = 3.3V$, Temp = 85 °C		~	50	μА
CIN	Input capacitance			5/1	10	pF
Соит	Output capacitance	50		5	10	pF
Ron(SEG)	SEG output impedance	V _{LCD} = 17.49V	6,	1.20	1.70	kΩ
R _{IN(COM)}	Upward COM output impedance	V _{LCD} = 17.49V		1.20	1.70	kΩ
f _{LINE}	Average Line rate	LC[4:3] = 10b	-10%	26.0	+10%	klps

POWER CONSUMPTION

Display Pattern	Conditions	Typical	Maximum	Unit
All-OFF	Bus = idle	1173	1467	μА
All-ON	Bus ≠ idje	1205	1507	μА
2-pixel checker	Bus = idle	1445	1807	μА
¥	Reset (standby current)	< 3	5	μА

8.0 ELECTRO-OPTICAL CHARACTERISTICS

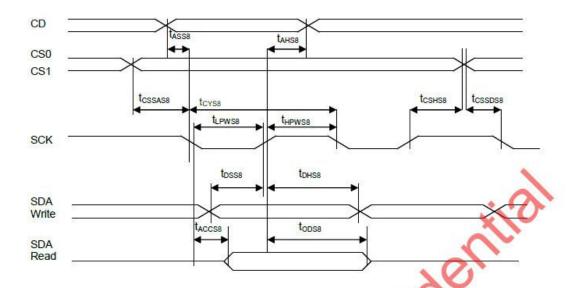


FIGURE 18: Serial Bus Timing Characteristics (for S8)

			335			
Symbol	Signal	Description	Condition	Min.	Max.	Unit
(2.7V ≤ V _{DD} ≤	3.6V, Ta= -30	to +85°C)		(read / write)		•
tassa tahsa	CD	Address setup time Address hold time	0	0 15	_	nS
tcssase tcshse	CS1/CS0	Chip select setup time Chip select hold time	.0	5 15		nS
tcyss t _{LPWss} t _{HPWss}	SCK	System cycle time Low pulse width High pulse width		430 / 220 200 / 95 200 / 95	_	nS
tossa tonsa	SDA (Write)	Data setup time Data hold time		/ 25 / 15	-	nS
taccss topss	SDA (Read)	Read access time Output disable time	C _L = 100pF	-/ 30/	200	nS

Note: tr (rising time), tf (falling time): \$15nS

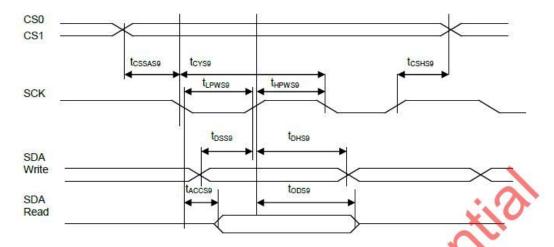


FIGURE 19: Serial Bus Timing Characteristics (for S9)

Symbol	Signal	Description	Condition	Min.	Max.	Unit
(2.7V ≤ V _{DD} ≤	3.6V, Ta= -30	to +85°C)		(read / write)		is .
t _{CSSAS9} t _{CSHS9}	CS1/CS0	Chip select setup time Chip select hold time		5 15		nS
t _{CYS0} t _{LPWS0} t _{HPWS0}	SCK	System cycle time Low pulse width High pulse width	C	430 / 220 200/ 95 200 / 95	-	nS
tosse tonse	SDA (Write)	Data setup time Data hold time	0	/ 25 / 15	=	nS
t _{ACCS9}	SDA (Read)	Read access time Output disable time	C _L = 100pF	-/ 30/-	200 -	nS

Note: tr (rising time), tf (falling time): ≤ 15nS

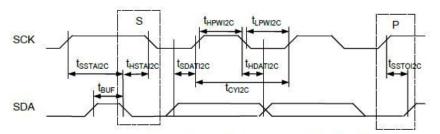


FIGURE 20: Serial Bus Timing Characteristics (for I²C)

Symbol	Signal	Description	Condition	Min.	Max.	Unit
.7V ≤ V _{DD} ≤ 3.6V,	Ta= -30 to +8	5°C)	·	(Read / Write)	XIO	
toyizo		SCK cycle time		530 / 230	<u> </u>	nS
t _{LPW12C}	SCK	Low pulse width		250 / 100	-	nS
t _{HPWI2C}		High pulse width		250 / 100	S 0	nS
tr, tf		Rise time and fall time		(O)		nS
tssdai2c	SCK	Data setup time	,	55		nS
t _{HDAI2C}		Data hold time	(10	-	nS
t _{SSTAI2C}		START Setup time		10	-	nS
thstai2c	SDA	START Hold time	()	55	· ·	nS
tssToi2C		STOP setup time		10	(=)	nS
t _{BUF}		Bus Free time between STOP and START condition		75	-	nS
te: tr (rising time),	50	III. SCUII				

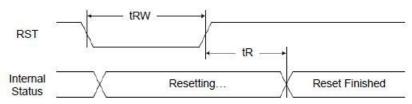


FIGURE 21: Reset Characteristics

Symbol	Signal	Description	Condition	Min.	Max.	Unit	
(2.7V ≤ V _{DD}	≤ 3.6V, Ta= –30	to +85°C)					
t _{RW}	RST	Reset low pulse width		5	- ^	mS	
t _R	RST, Internal Status	Reset to Internal Status pulse delay Wait before Power Down		10 1	NI'S	uS mS	
Note: Confilder Note:							
	-	ng and falling times (tr, tf) are stipu		64			
		tr ≤15nS		tf ≤15nS			

Note:

9.0 STANDARD SPECIFICATION FOR RELIABILITY

9.1 Standard specification of Reliability Test

No.	Test Item	Content of Test	Test Condition
110.			105t Condition
1	High temperature operation	Endurance test applying the high storage temperature for a long time.	+70°C for 500Hrs
2	Low temperature operation	Endurance test applying the low storage temperature for a long time.	-20°C for 500Hrs
3	Low temperature storage	Endurance test applying the low storage temperature for a long time.	-30 °C for 500hrs
4	High temperature storage	Endurance test applying the low storage temperature for a long time.	+80 °C for 500hrs
5	Damp heat Operation	Endurance test applying the electric stress and temperature / humidity stress to the element for a long time.	+60°C, 95%RH for 500Hrs
6	Thermal cycles operation	Endurance test applying the thermal shock operation for a long time.	Display on , 2h at -30°C; shift from - 30°C to + 80°C with gradient of 3°C/min; 2 h at 80°C; shift from +80°C to - 30°C with gradient of 2°C/min, repeated 100 times.
7	Thermal shocks	Endurance test applying the thermal shock operation for a long time.	Display off, 1h at -30°C; shift from - 30°C to + 80°C in 10 s max. 1 h at 80°C; shift from + 80°C to - 30°C in 10 s max., repeated 100 times
8	Random vibrations	Endurance test applying the vibrations. for a long time when transportation	Test 3 axes during 8 hour/axe - from 5 to 200 Hz: Acc = 10G - from 200 to 500 Hz: Amplitude =5mm - from 5 to 12HZ. Scanning speed= 1 octave / min
9	ESD test	To check the immunity of display to ESD incurred during storage, handling, maintenance and assembly operation.	Discharge resistance = $2k\Omega$ Discharge capacitance = $150pF$ Number of discharges = $3times$ Discharge interval = $3sec$ Discharge voltage = $\pm 2kV$ on COG connection interface.
10	FPC pull test	To verify the FPC/ glass connection resistance to pull forces applied to the FPC.	Keeping the LCD fixed, pull the FPC/FFC with a force F= 40 N for cm width of FPC at glass connection.

11	FPC peel test	To verify the FPC/ glass connection resistance to peel forces applied to the FPC.	BENDING RADIUS MIN. R= 2.0 MIN. 2.5
		the FPC.	Keeping the LCD fixed, pull the
			FPC/FFC according to the figure above
			with a force F= 10 N for cm width of
			FPC at glass connection. The minimum
			bending radius has to be 2 mm

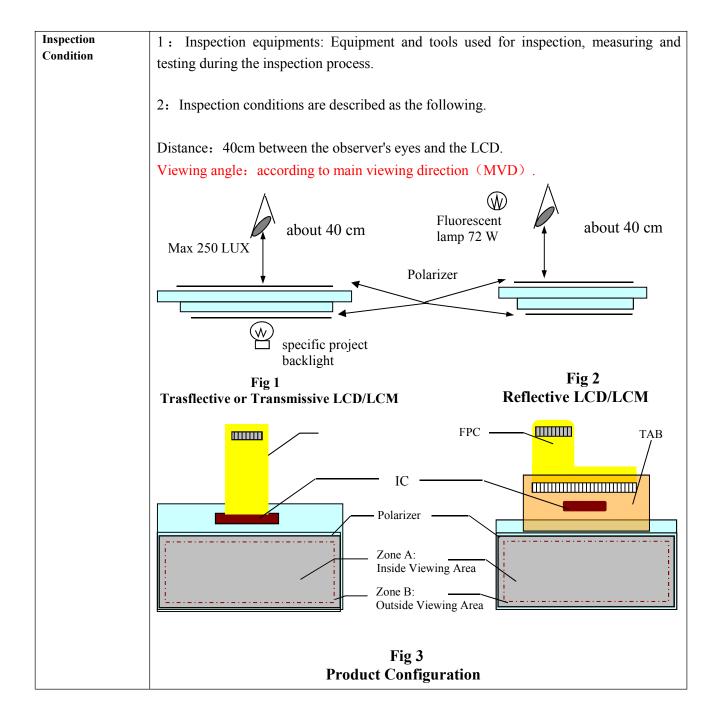
Remarks:

- 1) For operation test, above specification is applicable when test pattern is changing during entire operation test.
- 2) Inspections after reliability tests are performed when the display temperature resumes back to room temperature.
- 3) It is a normal characteristic that some display abnormality can be seen during reliability test. If the display abnormality can resume back to normal condition at room temperature within 24hours, there is no permanent destruction over the display. The display still possesses its functionality after reliability tests.

9.2 Failure Judgment Criteria

After the reliability tests above, test sample shall be let return to room temperature and humidity for at least 4 hours before final tests are carried out.

Criterion Item	Failure Judgment Criteria
Electrical characteristic	Electrical short and open.
Mechanical characteristic	Out of mechanical specification
Optical characteristic	Out of the Appearance Standard


10.0 QUALITY ASSURANCE

10.1 Inspection Standard

Item	Contents
Objective	This product inspection standard is intended to provide an inspection guideline for the
	LCD or LCM products manufactured by the Company.
Scope	Applicable to the inspection criteria of dimension, appearance, functionality etc.for the
	LCD or LCM products supplied to the customer. Criteria not included in this
	Inspection Standard will be justified in accordance with any documents agreed upon
	otherwise.
Inspection Unit	An inspection unit is a unit of display under inspection. The unit for the dimension
	addressed in this inspection standard is referring to mm, unless otherwise specified.
Inspection System	1: Inspection system includes inspection during production inspection and outgoing
	product inspection.
	2: Process inspection is the inspection for appearance and functionality of the products
	during the production process.
	3: Outgoing inspection is the inspection for the finished products prior to the delivery,
	based on defined sampling plan.

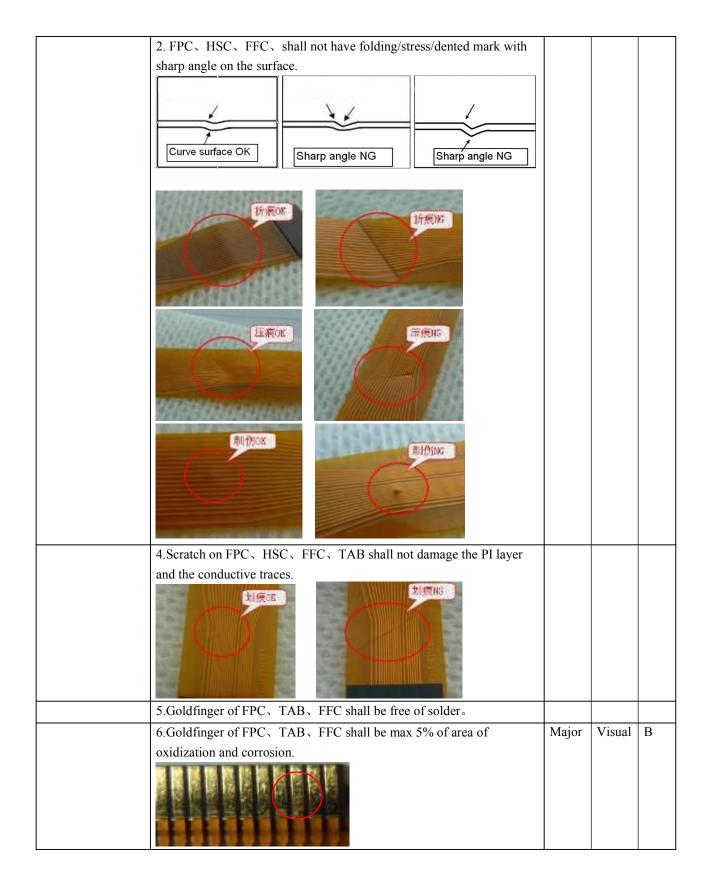
1 Edgewater St, Staten Island, NY 10305 * Tel. 718-720-0018 * Fax. 718-720-0225 * Email: sales@allshore.com

10.2 Acceptance Criteria

Inspection Item	Accep	Defect Classification	Method	Applicable Zone				
Functional	No display defect is r	•			Major	Visual	A	
	2. Abnormal display de							
	3. Missing segment and	_	_	ole.				
	4. Dim contrast or dark							
	5. Current consumption	(Idd MAX) shall not e	exceed 1	the limit				
	specified on the MI. 6. Wrong/reversed view	ing angle is not accept	tabla.					
	7. Uneven contrast or st			ance with master				
		cified limit sample if a						
	8. Display character/ pa	_						
	of the related models.							
Pattern	A — I —				Major	Visual	A	
Deformation	$A \rightarrow A$					Magni		
	\rightarrow \forall \leftarrow \forall	Size		Acceptable		fier		
	Ų	A < 0.10 A < 1	1 / 4337	Number 1 per segment				
	Λ	A≤0.10 or A≤1 whichever is less		3 per display				
	l l∫i	A>0.10 or A>1/4		Unlimted				
	^	whichever is less	-					
	A — —							
		Note: Protrusion shall	not car	use bridging				
		between adjacent segr	ments					
Black or white	length				Minor	Visual	A	
spots (on pattern),	→					Magni		
pin hole	width	Size, d (mm)		ptable quantity		fier		
	1	d ≤ 0.15	I	Unlimited				
	length	$0.15 < d \le 0.25$		1				
		d > 0.25		0				
	width	d = (length + width)	/ 2					
	Note: Number of spot shall not	be more than 1 ner eac	h segm	ent.				
	If 2 spots exist, the distan							

Chip-out	A. General chip-out (for glass edges and glass corner along perimeter	Minor	Visual	В
	seal)		Magni	
			fier	
	Ls			
	$ \begin{array}{ c c c c c }\hline X & Y & Z \\ \hline \leqslant 2.0 & \leqslant 1.5 \text{ or } \leqslant Ls, \text{ whichever is less} & \leqslant 1/2t \\ \hline \leqslant 2.0 & \leqslant 1.0 \text{ or } \leqslant Ls, \text{ whichever is less} & \leqslant t \\ \hline X = \text{length parallel with glass edge.} \\ Y = \text{width perpendicular with glass edge} \\ Z = \text{height of glass} \\ t = \text{single glass thickness} \\ \hline \text{Note:} \\ \hline \hline \\ \hline $			
	Chip out shall not reach the perimeter seal. B: Chip-out at terminal ledge or back of terminal ledge, but no	Minor	Visual	В
	B: Chip-out at terminal ledge or back of terminal ledge, but no exactly on terminal	WIIIIOI	Magni	D
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	fier	
	Note: In the event that the distance between the chip-out location and the terminal is less than the width of ITO pad Le, the acceptance criteria of chip-out on terminal shall apply.			

	C: Chip-out and protube	: Chip-out and protuberance at terminals				Minor	Visual Magni	В
	L J	A c V	Meet t	he dimens nce of the				
	X ≤0.5 Le & not bridge two adjacent ITO pads. Note:	Y ≤0.2L or ≤2 whichever		Z ≤1/2t				
	Chip out and protuberance Protuberance is not allow			e same IT	O pad.			
	D: Chip-out at corner (I'	TO ledge)	X ≤2.0	Y) ≤2.0	Z) ≤t	Minor	Visual Magni fier	В
Crack line	Crack line is not acceptable	ple.				Minor	Visual Magni fier	A & B
Number of Chip- out	Maximum acceptable nur on ITO ledge. Distance between chip-ou	nber of chip-ou	ıt: 2 defec	ets per LC	D; 1 defect	Minor	Visual	В



Black spot	1		Visual	A
White spot	W Acceptable		Magni	
Bubble	D Number		fier	
Foreign material	D≤0.15 Unlimited	Minor		
Dent	0.15 <d<0.25< td=""><td></td><td></td><td></td></d<0.25<>			
	D>0.25			
	Note: If 2 spots exist, the distance			
	must be > 20mm between each other			
	L			
	D= (L+W) /2			
Scratch line		Minor	Visual	A
Dark line			Magni	
Lint	Ф W		fier	
	L			
	Length Width Number			
	L≤3.0 W≤0.015 2			
	L≤1.5 W≤0.03 1			
	W>0.03 0			
	Note: If 2 line defects co-exist, the distance must be > 20mm between each other			
Endseal	A: Length of end-sealant		Visual Magni	A,B
			fier	
	B: Length of seal mouth C: Perimeter seal wi			
	dth			
	1.Minimum amount of end-sealant filled, A> 1/3 B			
	2.Maximum amount of end-sealant shall not spread over to Zone A,			
	Viewing Area (VA).			
	3.Dimension of end seal shall meet the dimension specified on the			
	drawing.			
	4.Deformation of perimeter seal which result in perimeter seal			
Dalarian	becoming less than 1/3 C is not acceptable.	Minan	Mina al	A D
Polarizer	Polarizer position shall meet the dimension tolerance indicated on the drawing	Minor	Visual	A,B
Background color	Background color shall not exceed the range of the limit sample.	Minor	Visual	A
Background color	Obvious uneven coloration (rainbow) shall not be seen.	Willion	Visuai	A
Ink printing	Pattern position on the display shall match the MI/drawing.	Major	Visual	A
ι . Ο	Pattern appearance shall match the MI/drawing.	Major	Visual	
	3. Reverse printing is not acceptable.	Major	Visual	
	4. Printing color shall match the master sample.	Major	Visual	
	5. Insufficient ink, blur, missing pattern, broken pattern are not	Major	Visual	
	acceptable.	<u>L</u>		
	6. Angle of the printed pattern, the dimension between the pattern	Major	Visual	
	and the glass edge shall meet the dimension on the drawing.			

	7. The printed patterns shall be free of stain, fingeprint and scratch.	Major	Visual Magni fier	
	8. Spot/pinhole on the pattern.	Major	Visual	
	$ \begin{array}{ c c c c }\hline D & Acceptable Number\\\hline D \le 0.15 & Unlimited\\\hline 0.15 < D \le 0.25 & 1\\\hline D > 0.25 & 0\\\hline Note:\\\hline If 2 spots exist, the distance must be > \\\hline 20mm between each other\\\hline D = (L+W)/2 \\\hline \end{array} $			
	9. Ink pattern deformation A Protrusion ≤ 0.10 or $\leq 1/4$ W, whichever is less, Indentation ≤ 0.10 or $\leq 1/4$ W, whichever is less	Minor	Visual Magni fier	A
	10. Ink line deformation A-B≤0.15	Minor	Visual Magni fier	A
	11. Pattern misalignment 12 o'clock 60° 90°	Minor	Visual	A
HSC FPC FFC	For 6 o'clock viewing angle product, light leakage between 90°to -60° shall not be seen. 1. The outer dimension shall meet the MI/drawing.	Minor	Visual	В

Stiffening tape	1. The tape sticking position shall meet the requirement on the	Minor	Visual	В
	MI/drawing.			
Identity Label	2. Missing label/tape/marking is not acceptable.			
	3. The format of identification (including date code and product			
Identity marking	code) shall meet the requirement (eg. label,color marking, inkjet			
	printing) on the MI/drawing.			
Metal bezel	1. Dimension and specification shall meet the requirment on the	Major		В
	MI/drawing.			
	2. The lock tab of bezel shall not have wrong bending orientation,	Minor	Visual	В
	missing tab, or crack.			
	3.Bezel shall be free of rust, twist, deformation, finger print, oil stain and	Minor	1	В
	unknown contamination.			

11.0 PRECAUTIONS FOR USING LCD MODULE

11.1 Handing Precautions

- 11.1.1 The display panel is made of glass and polarizer. Do not subject it to mechanical shock by dropping or impact which may cause chipping especially on the edges.
- 11.1.2 Do not touch, push or rub the exposed polarizers with anything harder than an HB pencil lead (glass, tweezers, etc.). The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.
- 11.1.3 If the display surface becomes contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If it is heavily contaminated, moisten cloth with Isopropyl alcohol or ethyl alcohol. Avoid using solvents like acetone (ketene), water, toluene, ethanol to clean the polarizer surface.
- Please keep the temperature within specified range for use and storage. Polarization degradation, bubble generation or polarizer peel-off may occur with high temperature and high humidity.
- Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.
- 11.1.6 Install the LCD Module by using the mounting holes. When mounting the LCD module make sure it is free of twisting, warping and distortion.
- 11.1.7 Exercise care to minimize corrosion of the electrode. Corrosion of the electrodes is accelerated by water droplets, moisture condensation or a current flow in a high-humidity environment.
- 11.1.8 NC terminal should be open. Do not connect anything.
- 11.1.9 If the logic circuit power is off, do not apply the input signals.
- 11.1.10 Avoid contacting oil and fats.
- 11.1.11 Condensation on the surface and contact with terminals due to cold will damage, stain or dirty the polarizers. After products are tested at low temperature they must be warmed up in a container before coming is contacting with room temperature air.
- Wipe off saliva or water drops immediately, contact with water over a long period of time may cause deformation or color fading.

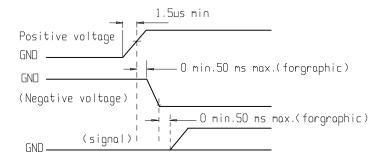
11.2 Electro-Static Discharge Control

11.2.1 Since this module uses a CMOS LSI, the same careful attention should be paid to electrostatic discharge as for an ordinary CMOS IC.

1 Edgewater St, Staten Island, NY 10305 * Tel. 718-720-0018 * Fax. 718-720-0225 * Email: sales@allshore.com

- Be sure to ground the body when handling the LCD modules. Tools required for assembling, such as soldering irons, must be properly grounded.
- To reduce the amount of static electricity generated, do not conduct assembling and other work under dry conditions. To reduce the generation of static electricity, be careful that the air in the work is not too dried. A relative humidity of 50%-60% is recommended.
- 11.2.4 The LCD module is coated with a film to protect the display surface. Exercise care when peeling off this protective film since static electricity may be generated.
- 11.2.5 When soldering the terminal of LCM, make certain the AC power source for the soldering iron does not leak.

11.3 Precaution for soldering to the LCM


- 11.3.1 Observe the following when soldering lead wire, connector cable and etc. to the LCD module.
 - Soldering iron temperature: $300 \sim 350$ °C.
 - Soldering time: ≤ 3 sec.
 - Solder: eutectic solder.

Above is a recommended approach based on a 5mm distance between soldering point and pin contact point. Due to different solder composition, actual distance between soldering and contact point, and processing method, it is recommended that customer to study and fine tuning their soldering process parameters accordingly so that the temperature at pin-LCD contact point does not exceed 85°C during soldering.

11.3.2 If soldering flux is used, be sure to remove any remaining flux after finishing to soldering operation. (This does not apply in the case of a non-halogen type of flux.) It is recommended that you protect the LCD surface with a cover during soldering to prevent any damage due to flux spatters.

11.4 Precautions for Operation

- Viewing angle varies with the change of liquid crystal driving voltage (V_0) . Adjust V_0 to show the best contrast.
- Driving the LCD in the voltage above the limit shortens its lifetime.
- 11.4.3 Response time is greatly delayed at temperature below the operating temperature range. However, it will recover when it returns to the specified temperature range.
- 11.4.4 If the display area is pushed hard during operation, the display will become abnormal. However, it will return to normal if it is turned off and then back on.
- When turning the power on, input each signal after the positive/negative voltage becomes stable (below figure is a general illustration where typical value depends on individual product design).

11.5 Storage

- 11.5.1 When storing LCDs as spares for some years, the following precautions are necessary.
 - Store them in a sealed polyethylene bag. If properly sealed, there is no need for desiccant.
 - Store them in a dark place. Do not expose to sunlight or fluorescent light, keep the temperature between 0°C and 35°C.
- 11.5.2 Environmental conditions:
 - Do not leave them for more than 168hrs. at 60°C.
 - Should not be left for more than 48hrs. at -20°C.

11.6 Safety

- 11.6.1 It is recommended to crush damaged or unnecessary LCD into pieces and wash them off with solvents such as acetone and ethanol, which should later be burned.
- 11.6.2 If any liquid leaks out of a damaged glass cell and comes in contact with the hands, wash off thoroughly with soap and water.